TEMPLATE FOR COURSE SPECIFICATION

HIGHER EDUCATION PERFORMANCE REVIEW: PROGRAMME REVIEW

COURSE SPECIFICATION

This Course Specification provides a concise summary of the main features of the course and the learning outcomes that a typical student might reasonably be expected to achieve and demonstrate if he/she takes full advantage of the learning opportunities that are provided. It should be cross-referenced with the program specification.

1. Teaching Institution	Middle Technical University
2. University Department/Centre	Machinery and equipment Technical / automotive branch
3. Course title/code	Fluid and Thermodynamics
4. Programme(s) to which it contributes	Laboratories
5. Modes of Attendance offered	Compulsory Weekly hours
6. Semester/Year	yearly
7. Number of hours tuition (total)	90 hours
8. Date of production/revision of this specification	23/11/2016
9. Aims of the Course	·

Department of Machinery technologies / Automotive branch aims to prepare technical staffs that are a link between Specialist and technician The department prepares and create graduate and provide theoretical and practical information The process is to be able to implement the business entrusted to him .

10. Learning Outcomes, Teaching ,Learning and Assessment Method

A- Knowledge and Understanding

A1- Studying theoretical processes and cycles of Thermodynamics Theoretical study of different types of Heat transfer.

A2- making all students understand the theory and practical of thermodynamics basics.

A3- the possibility of using computer software that will related at this field.

B. Subject-specific skills

B1 - skills in the repair and maintenance of automobiles workshops (machinery unit laboratories and workshops)

B2 - An increase in job skills in the use new technologies and software that we can say it's very useful at this field.

B3 - An increase in acts of skills.

Teaching and Learning Methods

1 -Lectures 2. systematic training 3-laboratories 4- Summer Training 5-workshops

Assessment methods

experimental tests examinations 2. Quarterly 3- final exam 4- oral tests
5- daily tests

C. Thinking Skills

C1- Increase the student's desire to competence through the development of the relationship with the department

C2- Developing the relationship between the student and the professor and the article by explaining the scientific article modern methods

C3- Development of the relationship between the student and technical staff through the use of educational models

Teaching and Learning Methods

1–Lectures 2- laboratory 3-mechanical workshops 4- systematic training 5-summer training

Assessment methods

1-Written tests 2 -quarterly examinations 3-final examinations 4- Education 5-daily oral tests

D. General and Transferable Skills (other skills relevant to employability and personal development)

D1- skills in maintenance and repair of machinery production (per unit of laboratories and workshops)

D2- increase student skills in production (quality and the quality of the product) D3- increase student skills to work in mechanical workshops

D4-skills in how to use computers and other software .

11. Course Structure					
Week	Hours	ILOs	Unit/Module or Topic Title	Teaching Method	Assessment Method
1	2Th+1Prac.	Student teaching how to understa nd the lesson	Types of unit systems, density, specific volume, pressure, temperature (Celsius and absolute),Properties of fluids : difference between fluids and solid metals, difference between liquids and gases	Theoretical + practical	Test + practical
2	2Th+1Prac	Student teaching how to understa nd the lesson	Definition of density, relative density, specific weight, specific volume, ideal fluid, real fluid, examples.	Theoretical + practical	Test + practical
3	2Th+1Prac	Student teaching how to understa nd the lesson	Shear stress, dynamics of fluid flow, Newton's Law of viscosity, dynamic viscosity, kinematic viscosity , surface tension Capillarity, liquid vapour pressure,	Theoretical + practical	Test + practical
4-6	2Th+1Prac	Student teaching how to understa nd the lesson	Pressure, liquid pressure head, Pascal aw of pressure, variation of liquid pressure heat with respect to gravity, pressure at a datum for stationary liquid	Theoretical + practical	Test + practical
7	2Th+1Prac	Student teaching how to understa nd the lesson	Fluid motion, fluid flow, pressure of fluid flow, laminar flow, turbulent flow, velocity profile of flow, Reynold's number.	Theoretical + practical	Test + practical
8	2Th+1Prac	Student teaching how to understa nd the lesson	Flow rate, volumetric flow rate, mass flow rate, - Continuity equation, problems on continuity equation for uncompressibil fluids.	Theoretical + practical	Test + practical
9-11	2Th+1Prac	Student teaching how to understa nd the lesson	Bernoulli equation and application.	Theoretical + practical	

	2Th+1Prac	Student	First law of	Theoretical +	Test + mustical
	2111+111ac	teaching	thermodynamics, kinds	practical	Test + practical
		-	of energy, (dynamic	practical	
		how to	energy, potential		
		understa	mechanical energy,		
		nd the	internal energy, heat,		
		lesson	work), work of a system		
			represented on pressure		
			– volumle diagram,		
			energy of flow, enthalpy,		
			energy – conservation		
			equation of first law of		
			thermodynamics.		
			Classifications of		
			systems, application of		
			first law of		
12-14			thermodynamics on		
12-14			closed systems, energy		
			equation for steady flow,		
			some application on first		
			law for steady state open		
			systems, application on		
			first law for steady state		
			open systems,		
			application on (nozzle,		
			diffuser, through,		
			condenser, boiler,		
			turbine, compressor, heat exchanger, open		
			plane), representation of		
			work for open systems		
			for steady flow on		
			pressure volume		
			diagram, examples.		
	2Th+1Prac		5) Second law of	Theoretical +	Test + practical
			thermodynamics :	practical	
			Reversible process,	1	
		Student	entropy, temperature-		
		teaching	entropy diagram,		
15		how to	coordinates place on T-S		
15		understa	diagram, cycles, work of		
		nd the	cycle, thermal efficiency		
		lesson	of cycle, examples.		
			State of second law for		
			heat engine, and for heat		
	2Th+1Prac		pump. Ideal Gas :	Theoretical +	
	2111+1Flac		Specific heat at constant		Test + practical
			volume, specific heat at	practical	
			constant pressure,		
		Student	equation of ideal gas		
		teaching	state, gas constant,		
16-19		how to	universal gas constant.		
		understa	Constant volume		
		nd the	process, constant		
		lesson	pressure process,		
			constant temperature		
			process, studying of		
			process on P – V		

			diagram and T – S diagram, examples.		
20-24	2Th+1Prac	Student teaching how to understa nd the lesson	Adiabatic process, isentropic process, studying of process on P -V diagram and T-S diagram , examples.	Theoretical + practical	Test + practical
25-28	2Th+1Prac	Student teaching how to understa nd the lesson	Heat transfer by conduction : Steady state heat conduction, conduction through homogenous plane wall, conduction through composite wall, thermal resistance, heat conduction through homogenous cylindrical wall, heat conduction through multi layers cylindrical wall, examples. Heat transfer by convection : free &forced-thermal resistance Heat transfer by radiation, definition of thermal radiation, emissivity of black body, Stefan – Boltzmann law for radiation, emissivity	Theoretical + practical	Test + practical
29-30	2Th+1Prac	Student teaching how to understa nd the lesson	Heat exchangers and their types, logarithmic mean temperature difference, calculations of heat exchangers, effectiveness of heat exchangers, examples.	Theoretical + practical	Test + practical

12. Infrastructure		
Required reading: · CORE TEXTS · COURSE MATERIALS · OTHER	Textbooks countable by the Technical Education	
Special requirements (include for example workshops, periodicals, IT software, websites)	Adoption of teaching on external sources + methodology in the preparation of lectures	

Community-based facilities
(include for example, guest
Lectures, internship, field
studies)

Adoption of teaching magazines and Reference article studied and reported by students

13. Admissions		
Pre-requisites		
Minimum number of students	60	
Maximum number of students	80	

Saddam Hasan Raheemah

The Lecturer of Subjecct

Sha'alan Ghannam Aflok

The Head of Automotive Department